Synthesis, Characterization, and Reactivity of a Novel μ - η^2 : η^2 -Diselenidodicopper(II) Complex

Jun Matsumoto, Yuji Kajita, and Hideki Masuda*

Department of Frontier Materials, Graduate School of Engi[nee](#page-2-0)ring, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan

S Supporting Information

[ABSTRACT:](#page-2-0) The first μ - η^2 : η^2 -diselenidodicopper(II) complex has been obtained in the reaction of a copper (I) complex with N,N′,N″-tribenzyl-cis,cis-1,3,5-triaminocyclohexane and elemental selenium. The structure and reactivity of the complex is described.

Selenium-containing proteins, selenoproteins, serve a variety
of important roles in cellular activity.^{1−3} The functions of a
number, of selenoproteins, baye, not ust been assortinged number of selenoproteins have not yet been ascertained, although it is thought that they inv[olve](#page-2-0) substantially the chelation of heavy metals.² In some cases, selenium appears to provide protection against metal toxicity.⁴ These findings may indicate a specificity of [se](#page-2-0)lenide for binding metals such as copper and iron, but the essential bas[is](#page-2-0) of this behavior is unknown.5−⁷ On the other hand, much attention has been focused on the chemistry of transition-metal compounds containin[g d](#page-2-0)ichalcogen ligands because of their unique structures and reactivities $8-14$ and their involvement in biological systems.15−¹⁷ For the above reasons, it is also intriguing to explain the ch[emic](#page-2-0)al properties of the dicopper complex bridged [with d](#page-2-0)iselenide dianion $(Se_2^2$). However, such a complex has not been prepared, in contrast to substantial knowledge on the systems of selenidomulticopper clusters.^{18−24} This is probably due to the fact that stable selenidocopper clusters or their salts are mainly generated from the reacti[on of](#page-2-0) copper salts with selenium sources. Therefore, only structural information about such complexes has been reported, and their reactivity has been rarely studied.

We selected a cis,cis-1,3,5-triaminocyclohexane derivative as the supporting ligand for the purpose of eliminating the generation of selenidocopper salts. This ligand has a strong σ donating ability and is expected to indicate a strong chelating effect in the formation of 6-6-6-membered chelate rings. Herein, we report the first X-ray structure and chemical properties of a μ - η ²- η ²-diselenidodicopper complex. Additionally, the reactivities of the complex with $PPh₃$, CO, MeCN, xylyl isocyanide, and dioxygen are also described and discussed.

The addition of elemental selenium (1 equiv) to a paleyellow solution of $\lceil Cu(MeCN)(Bn_3TACH) \rceil (SbF_6)$ (1; $Bn₃TACH = N₁N'₁N''-tribenzyl*-cis*, cis-1*,* 3*,* 5-triaminocyclohex$ ane) in N,N-dimethylacetamide (DMA) at room temperature resulted in a sudden change to a green color. After stirring for 6 h, the color changed to dark-brown and a black precipitate was filtered off. By condensation in a vacuum and crystallization from CH_2Cl_2/Et_2O , dark-brown crystals of $[Cu_2(Se_2)-$

 $(Bn_3TACH)_2](SbF_6)_2$: 2DMA (2·2DMA) were isolated in 23.5% yield (Scheme 1). An oily green product was obtained

Scheme 1. Synthesis of Complex 2

from the filtrate. Other redox processes may have occurred between the copper(I) ion and elemental selenium. However, other copper species were not isolated. From the treatment of 1 with excess amounts of elemental selenium (2 equiv), 2·2DMA was obtained in 30.9% yields as crystals, whose structures were determined by X-ray analysis. The X-ray structure of 2·2DMA revealed a unique $\{ \mathrm{Cu}^\mathrm{II}{}_2(\mu\text{-}\eta^2\text{-}\eta^2\text{-}\mathrm{Se}_2) \}$ core structure (Figure 1). The solution and solid-state structures of 2 were also identified by mass spectrometry, elemental analysis, and IR, [ab](#page-1-0)sorption, reflectance, and multinuclear NMR spectroscopies. The structure of 2·2DMA includes a centrosymmetric binuclear complex pentacoordinated in a square-pyramidal geometry (τ = $(0.01)^{25}$ with two secondary amino nitrogen atoms (N1 and N2) and two selenium atoms in equatorial positions. The rema[ini](#page-2-0)ng nitrogen atom N3 is located at the apical position. The dihedral angle (ϕ) between the two planes defined by the $CuSe₂$ plane is 180.0°, and the $Cu₂Se₂$ core is completely planar. The copper(II) coordination geometry is structurally similar to that of the μ - η^2 : η^2 -disulfidodicopper complex analogues $[Cu_2(S_2)(Bn_3TACH)_2](SbF_6)_2$ (3; $\phi = 180.0^{\circ}$) reported previously, whereas the dihedral angles in $\lbrack Cu_2(S_2) (R_3TACH)_2](SbF_6)_2$ (R = Et or iBu) are smaller than 180° (ϕ) < 180.0°).²⁶ The Cu···Cu and Se−Se distances for 2·2DMA are 4.0636(6) and 2.3898(5) Å, respectively. The Se−Se distance of the $\{Cu^{II}_{2}(\mu-\eta^{2}:\eta^{2}-Se_{2})\}$ $\{Cu^{II}_{2}(\mu-\eta^{2}:\eta^{2}-Se_{2})\}$ $\{Cu^{II}_{2}(\mu-\eta^{2}:\eta^{2}-Se_{2})\}$ core is significantly longer than that of Se₂ [2.19(3) Å]²⁷ and is similar to the Se−Se distance in the crystal of Na₂Se₂ [2.38(5) Å].²⁷ This clearly indicates that the diselenide molec[ule](#page-2-0) in the $Cu₂Se₂$ core is reduced by two electrons. The Se−Se bond [len](#page-2-0)gth is similar to that of the La₂(η - η ²- η ²-Se₂) core [2.385(4) Å; $\phi = 180.0^{\circ}$],²⁸ while it is slightly longer than that of the $\text{Ni}_2(\mu \cdot \eta^2 \cdot \eta^2 \cdot \text{Se}_2)$ complex with

Received: December 14, 2011 Published: January 18, 2012

Figure 1. X-ray structure of the cationic portion of 2·2DMA, showing 50% probability thermal ellipsoids. The hydrogen atoms and the solvent molecules have been omitted for clarity. Selected interatomic distances [Å]: Se1−Se1′ 2.3898(5), Cu1···Cu1′ 4.0636(6), Cu1−Se1 2.3521(5), Cu1−Se1′ 2.3621(4), Cu1−N1 2.0314(18), Cu1−N2 2.002(3), Cu1−N3 2.199(3).

β-diketiminate [2.3304(6) Å; $\phi = 134.35^{\circ}$],²⁹ Ir₂(μ-η²:η²-Se₂) $[2.3628(7)$ Å; $\phi = 75.77^{\circ}]$,³⁰ and MoMn(μ - η^2 : η^2 -Se₂) $[2.3144(6)$ Å; $\phi = 80.85^{\circ}]$ cores.³¹ Intere[stin](#page-2-0)gly, the Se–Se bond is shorter when the dihe[dra](#page-2-0)l angle, ϕ , is smaller than 180°. Shorter Se−Se bonds ap[pe](#page-2-0)ar in diselenidodimetal complexes with dihedral angles smaller than $\phi = 180.0^{\circ}$. This fact suggests that electron transfer by back-donation from metal ions to the antibonding orbital of the diselenide molecule causes a weakening of the bending of the M_2Se_2 plane. The Cu–N_{TACH} bond lengths [2.0314(18), 2.002(3), and 2.199(3) Å] are very similar to those of 3 [2.024(3), 2.002(3), and 2.195(3) Å] and are shorter than those of $[Cu_2(OH)_2(Bn_3TACH)_2](CIO_4)_2$ [4; 2.0451(11), 2.0301(10), and 2.2495(11) Å].³² This trend may indicate that the order of the electron-donating ability from the TACH ligand to the copper(II) ion is $2 \approx 3 > 4$, suggesting that the electron-donating abilities of diselenide and disulfide are smaller than that of hydroxide.

It is clear from our spectroscopic results that the $Cu_2(\mu \eta^2:\eta^2$ -Se₂) structure of complex 2 is retained in solution. Complex 2 is ESR-silent in acetone, and its ${}^{1}H$ NMR spectrum in acetone- d_6 exhibits peaks in the diamagnetic region. These results indicate strong antiferromagnetic coupling between the copper(II) ions. The UV−vis absorption spectrum of 2 (Figure 2) in CH_2Cl_2 at ambient temperature has multiple spectral features at λ_{max} [nm] $(\varepsilon_{\text{max}}, M^{-1} \text{ cm}^{-1}) = 294 \text{ (sh, 5400)}, 375$ (16 000), 433 (11 000), 476 (sh, 7900), and 705 (510). The spectral pattern of 2 is very similar to that of 3 reported previously, although the bands are slightly red-shifted relative to those of 3. The two bands at 375 and 476 nm are assigned to the in-plane diselenido π^*_{σ} -to-Cu^{II} charge-transfer (CT) transition, and the band at 433 nm is assigned to the out-ofplane diselenido π^* _v-to-Cu^{II} CT. The ⁷⁷Se NMR spectrum of 2 in acetone- d_6 has a resonance at 1070.6 ppm. ⁷⁷Se NMR spectra of μ - η^2 - η^2 -diselenide species and copper-bound inorganic selenide have not been reported, although spectra of previously reported selenium-containing compounds have been recorded in the range of −800 to +2400 ppm. For the tungsten and molybdenum selenide compounds reported previously, those of the bridging selenide are observed in the range of $1100 > \delta$ 600 ppm and those of metal-bound selenide are detected in the

Figure 2. UV-vis spectrum of 2 (5.0 × 10⁻⁵ M) in CH₂Cl₂. Inset: UV–vis spectrum of a concentrated CH₂Cl₂ solution of 2 (2.5 × 10⁻⁴) M).

range of 1100 > δ > 500 ppm.¹⁰ So, the peak detected for complex 2 is reasonable as the diselenide ligand bridged between two copper (II) ions[.](#page-2-0) The positive electrospray ionization mass spectrometry (ESI-MS) spectrum of complex 2 was also measured in acetone, and the isotope pattern was observed at m/z 1318.8, which is assignable to $[M - SbF_6]^+$. This structure has been confirmed to be retained in solution and in the gaseous phase.

It is very important to understand the reactivity of copper− selenium complexes when we consider the biological selenium cycle, but this area has been rarely investigated. Therefore, we studied the reactivity of 2 toward exogenous substrates that were previously investigated in the copper–sulfur systems.^{33–35} The results are quite interesting from the viewpoint of selenium-atom transfer. The reaction of 2 with 4 eq[uiv of](#page-2-0) PPh_3 provides 2 equiv of Se= PPh_3 , as determined by monitoring of 31P NMR spectra. A single crystal of [Cu- $(Bn_3TACH)(PPh_3)](SbF_6) \cdot CH_2Cl_2$ was obtained from the mixture, and a fragment of $[Cu(Bn₃TACH)(PPh₃)]⁺$ was also detected in ESI-MS analysis. The reaction of 2 and 2 equiv of xylyl isocyanide (CN-xylyl) afforded the copper(I) complex $[Cu(Bn₃TACH)(CN-xylyl)](SbF₆)$ without any detection of selenium-inserted Se $=$ C $=$ N-xylyl species. When an acetone solution of 2 was stirred under a CO atmosphere (1 atm), the brown color disappeared and the previously reported carbonyl complex $[Cu(CO)(Bn_3TACH)](SbF_6)$ was obtained, as confirmed by the observation of v_{CO} 2076 cm^{-1,32} The . brown precipitate was separated and identified as elemental selenium. Additionally, when excess MeCN was adde[d](#page-2-0) to an acetone solution of 2, the brown color bleached and a brown precipitate was isolated. The starting material 1 was recovered from the mixture. Therefore, it has been clarified that complex 2 is easily reduced from copper (II) to copper (I) by reaction with exogenous substrates to generate elemental selenium. This indicates that the metal center is easily stabilized in a low valence.

A CH_2Cl_2 solution of 2 at room temperature reacts with dioxygen to produce a green solution with UV−vis features at $\lambda_{\text{max}} = 359 \text{ nm}$ ($\varepsilon = 3900 \text{ M}^{-1} \text{ cm}^{-1}$) and 636 nm ($\varepsilon = 410 \text{ M}^{-1}$ cm⁻¹). These spectral features are characteristic of the bis(μ hydroxo)dicopper(II) complex 4 reported previously.³² This means that a $bis(\mu\text{-oxo})$ dicopper species would have been generated after the selenium exchange. Reaction inter[med](#page-2-0)iates were not detected at low temperature because of their instability. This reaction obeys pseudo-first-order kinetics, and the half-life time was estimated to be $t_{1/2} \sim 9.7$ h, as measured by monitoring of the intensity of the peak at 375 nm. The halflife of the μ - η^2 : η^2 -disulfidodicopper(II) complex 3 was found to be ∼5.7 h. The Cu₂Se₂ species may be more stable than the $Cu₂S₂$ species in reactions with dioxygen. In this reaction, the diselenidodicopper(II) complex, dioxygen, and two external hydrogen atoms have been consumed, and the $bis(\mu-hydroxo)$ dicopper(II) complex and 2 equiv of elemental selenium have been generated. The organism Thiobacillus ferrooxidans is known to oxidize copper(II) selenide to generate elemental selenium, as shown in Scheme $2⁵$ Thus, the reaction of 2 with

Scheme 2. Oxidation Reaction Catalyzed by T. ferrooxidans

$$
2CuSe + 4H^{+} + O_{2} \xrightarrow{T. ferroxidans} 2Cu^{2+} + 2Se^{0} + 2H_{2}O
$$

dioxygen may be comparable to the reaction in T. ferrooxidans. Here we propose that copper selenide may serve through coordination with coligands similar to $Bn₃TACH$ -like in the oxidation process of T. ferrooxidans.

In summary, we have synthesized and characterized a new TACH ligand-supported Cu_2Se_2 complex, $[\text{Cu}^{\text{II}}_2(\mu \text{--} \eta^2 \text{--} \eta^2 \text{--} \text{Se}_2)$ - $(Bn_3TACH)_2](SbF_6)_2$ (2). Using UV–vis and ⁷⁷Se NMR spectroscopies and crystal structure analysis, we determined that the $Cu₂Se₂$ core has characteristics similar to those of other ${\rm Se_2}^{\rm 2-}$ compounds. We have also observed the conversion of $\rm 2$ to the copper(I) adduct in a reaction of 2 with PPh_3 , xylyl isocyanide, CO, and MeCN as exogenous substrates. Furthermore, in the reaction of 2 with dioxygen, diselenium is displaced by dioxygen to produce $[Cu_2(OH)_2(Bn_3TACH)_2]^{2+}.$

■ ASSOCIATED CONTENT

6 Supporting Information

X-ray crystallographic data in CIF format, synthesis, spectra, spectral data, crystallographic data, and ORTEP drawings for complex 2 -2DMA (CCDC 839737) and $\left[Cu(Bn_3TACH)-\right]$ $(PPh_3)](SbF_6)\cdot CH_2Cl_2$ (CCDC 839738). This material is available free of charge via the Internet at http://pubs.acs.org.

E AUTHOR INFORMATION

Corresponding Author

*E-mail: masuda.hideki@nitech.ac.jp.

■ ACK[NOWLEDGMENTS](mailto:masuda.hideki@nitech.ac.jp)

We gratefully acknowledge support of this work by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and the Knowledge Cluster Project.

■ REFERENCES

(1) Behne, D.; Kyriakopoulos, A. Annu. Rev. Nutr. 2001, 21, 453− 473.

- (2) Jacob, C.; Giles, G. I.; Giles, N. M.; Sies, H. Angew. Chem., Int. Ed. 2003, 42, 4742−58.
- (3) Stolz, J. F.; Basu, P.; Santini, J. M.; Oremland, R. S. Annu. Rev. Microbiol. 2006, 60, 107−130.
- (4) Lenza, M.; Lens, P. N. L. Sci. Total Environ. 2009, 407, 3620− 3633.
- (5) Torma, A. E.; Habashi, F. Can. J. Microbiol. 1972, 18, 1780−1781.
- (6) Oremland, R. S.; Herbel, M. J.; Blum, J. S.; Langley, S.; Beveridge, T. J.; Ajayan, P. M.; Sutto, T.; Ellis, A. V.; Curran, A. S. Appl. Environ. Microbiol. 2004, 70, 52−60.
- (7) Bui, B. T. S.; Mattioli, T. A.; Florentin, D.; Bolbach, G. R.; Marquet, A. Biochemistry 2006, 45, 3824−3834.
- (9) Ansari, M. A.; Ibers, J. A. Coord. Chem. Rev. 1990, 100, 223−266. (10) Kolis, J. W. Coord. Chem. Rev. 1990, 105, 195−219.
- (11) Shibahara, T.; Cnh, H. N. H. H. C. H. Coord. Chem. Rev. 1993, 123, 73−147.
- (12) Aullón, G.; Hamidi, M.; Lledós, A.; Alvarez, S. Inorg. Chem. 2004, 43, 3702−3714.
- (13) Adams, R. D.; Kwon, O.-S.; Miao, S. Acc. Chem. Res. 2005, 38, 183−190.
- (14) Alvarez, S.; Hoffmann, R.; Mealli, C. Chem.-Eur. J. 2009, 15, 8358−8373.
- (15) York, J. T.; Bar-Nahum, I.; Tolman, W. B. Inorg. Chim. Acta 2008, 361, 885−893.
- (16) Tolman, W. B. Angew. Chem., Int. Ed. 2010, 49, 1018−1024.
- (17) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev. 2004, 104, 1013−1045.
- (18) Liu, C. W.; Hung, C.-M.; Chen, H.-C.; Wang, J.-C.; Keng, T.-C.; Guo, K. Chem. Commun. 2000, 1897−1898.
- (19) Lorenz, A.; Fenske, D. Angew. Chem., Int. Ed. 2001, 40, 4402− 4406.
- (20) Strobel, S.; Schleid, T. J. Solid State Chem. 2003, 171, 424−428.
- (21) Liu, C. W.; Hung, C.-M.; Santra, B. K.; Wang, J.-C.; Kao, H.-M.; Lin, Z. Inorg. Chem. 2003, 42, 8551−8556.
- (22) Nitschke, C.; Fenske, D.; Corrigan, J. F. Inorg. Chem. 2006, 45, 9394−9401.
- (23) Eichhöfer, A.; Olkowska-Oetzel, J.; Fenske, D.; Fink, K.; Mereacre, V.; Powell, A. K.; Buth, G. Inorg. Chem. 2009, 48, 8977− 8984.
- (24) Fu, M.-L.; Issac, I.; Fenske, D.; Fuhr, O. Angew. Chem., Int. Ed. 2010, 49, 6899−6903.
- (25) Addison, A. W.; Rao, T. N.; Reedijk, J.; Rijn, J. V.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, 1349−1356.
- (26) Kajita, Y.; Matsumoto, J.; Takahashi, I.; Hirota, S.; Funahashi, Y.; Ozawa, T.; Masuda, H. Eur. J. Inorg. Chem. 2008, 3977−3986.
- (27) Mazwell, L. R.; Mosley, V. M. Phys. Rev. 1940, 57, 21−23.
- (28) Chen, J.-F.; Jin, Q.-Y.; Pan, Y.-L.; Zhang, Y.; Jia, D.-X. Chem. Commun. 2009, 7212−7214.
- (29) Yao, S.; Xiong, Y.; Zhang, X.; Schlangen, M.; Schwarz, H.; Milsmann, C.; Driess, M. Angew. Chem., Int. Ed. 2009, 48, 4551−4554.
- (30) Cade, I. A.; Hill, A. F.; McQueen, C. M. A. Organometallics 2009, 28, 6639−6641.
- (31) Adams, R. D.; Kwon, O.-S. Inorg. Chem. 2003, 42, 6175−6182.
- (32) Kajita, Y.; Arii, H.; Saito, T.; Saito, Y.; Nagatomo, S.; Kitagawa, T.; Funahashi, Y.; Ozawa, T.; Masuda, H. Inorg. Chem. 2007, 46, 3322−3335.
- (33) Helton, M. E.; Maiti, D.; Zakharov, L. N.; Rheingold, A. L.;
- Porco, J. A.; Karlin, K. D. Angew. Chem., Int. Ed. 2006, 45, 1138−1141.
- (34) Brown, E. C.; Bar-Nahum, I.; York, J. T.; Aboelella, N. W.; Tolman, W. B. Inorg. Chem. 2007, 46, 486−496.
- (35) Bar-Nahum, I.; York, J. T.; Young, J. V. G.; Tolman, W. B. Angew. Chem., Int. Ed. 2008, 47, 533−536.

⁽⁸⁾ Müller, A.; Jaegermann, W.; Enemark, J. H. Coord. Chem. Rev. 1982, 46, 245−280.